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COMMENT 
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Abstract. The effects of site dilution on the phase diagram of the contact process and other 
related non-equilibrium systems is studied by use of the mean-field renormalisation group 
method. The variation of the critical kinetic parameter reflects the decrease of the effective 
dimensionality due to dilution. 

1. Introduction 

Among the simplest realisations of non-equilibrium systems whose steady states display 
a phase transition are certain stochastic lattice models when rates of creation and 
annihilation of particles depend on the local environment and on certain kinetic 
parameters. 

One example is the ‘contact process’, which can be seen as a model of an epidemic 
with recovery or as a realisation of Schlogl’s model of an autocatalytic reaction. This 
process has been exhaustively studied by different methods [ 1,2] and shown to belong 
to the same universality class as directed percolation [3] and Reggeon field theory [4]. 
Other related models, such as the so-called A-model, which can be used to describe 
the poisoning of a catalytic surface have also been studied [2]. Whereas in most cases 
rather accurate estimates of critical dynamic parameters and critical exponents can be 
achieved by numerical methods (either Monte Carlo simulations or, in the case of 
one-dimensional systems, series expansions methods [ 23) the analytic studies are still 
far behind: besides the rate approximation, which is essentially a site mean-field theory 
and gives rather poor estimates of the critical parameters, there are some results of 
the dynamic pair approximation [ 5 ]  and, recently, of another finite cluster method 
which also incorporates the ideas of scaling, the mean-field renormalisation-group 
(MFRG) method [6]. The results of the latter are very close to those of the pair 
approximation when one compares one- and two-site clusters [ 71, whereas the consider- 
ation of bigger clusters is likely to improve the results considerably. 

The possibility of spatial disorder by introducing randomness in the local reaction 
probabilities was first considered by Kinzel [3] and then developed by Noest [8] for 
the stochastic cellular automata of directed percolation. The emphasis of this numerical 
study is less on the concentration dependence of the critical parameters than on the 
determination of the critical exponents associated with a new universality class. 

In this work, we use the M F R G  method to study how dilution affects the critical 
kinetic parameters in some of these models with different local rules and dynamics, 
The method has the advantage of being an analytic one and is easily implemented 
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with small clusters, even though the difficulty in treating bigger clusters, due to the 
extension of the algebra, precludes an accuracy comparable to the results of computer 
simulations, o r  a correct description in the vicinity of the percolation threshold. 

In  section 2 we consider the contact process with dilution. In section 3 we study 
a model with sequential dynamics and local rules identical to the ones of site-directed 
percolation; for comparison, the results for the same model with simultaneous updating 
in two interpenetrating sublattices are also presented. In section 4 we consider again 
the contact process but with a different type of disorder. We conclude in section 5 
with a brief discussion of the results. 

2. Contact process with dilution 

This process is applied to lattice models such that to each site a binary variable g, = 0 
or 1 is associated. U, = O  (1) can represent a vacant (occupied) site on a process of 
adsorption-desorption on a surface; it can represent a healthy (ill) person in a 
population with low mobility subjected to an  epidemic process, or a moderate 
(extremist) view in the propagation of public opinion. The local rules for this process 
are such that U, = 1 changes to U, = 0 at a rate 1 / (  1 + 7 , )  whereas the rate for U, = 0 
changing to U, = 1 is taken as 7 , / (  1 + 7 , )  times the fraction of 1’s in ‘influent’ nearest- 
neighbour sites to 1. 

We consider here a model with quenched disorder such that 7, = 7 in a fraction p 
of the sites and 7, = 0 in the remaining sites. In processes of desorption-adsorption 
this means that a fraction (1 - p )  of the sites is not appropriate to adsorb particles, 
whereas in epidemic processes this means that a fraction (1 - p )  of the population has 
been vaccinated and  is therefore imune to catching illness again; and  in the process 
of propagation of a public opinion we can also think of the effects of cutting the means 
of communication to a fraction of individuals chosen at random, therefore securing 
that this fraction cannot hold extremist views and  has no possibility of influencing its 
neighbours. 

Let us exemplify the rules of this process on a square lattice. Consider the 
neighbourhood of site i, as shown in figure l ( a ) .  In this case, all the nearest neighbours 
of i are ‘influent’ sites (7, is non-zero for all of them, so there is the possibility of 0’s 
becoming 1’s in a subsequent time interval); the rate for site i going from U, = O  to 
ur = 1 is then $ T / (  1 + 7);  $ being the ratio of the number of 1’s in nearest-neighbour 
sites ( = 2 )  and  the number of influent sites (=4). Now consider the configuration 
displayed in figure l ( b ) ,  where the site labelled by x is a non-influent site (i.e. 7, = O ) ;  
in a steady situation the configuration of that site will always be U, = 0, since there is 
no possibility for 0 to change to 1 since this site has been prevented from communicating 

l a )  ( b l  

Figure I .  Possible configurations for the neighbours of site i. ( a )  Four  ‘influent’ neighbours, 
two of which are  in state ( 1  ); ( b )  three ‘influent’ neighbours, two of which are  in state (1).  
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with others. In this case the rate for site i going from o, = 0 to o, = 1 is now $v/( 1 + v), 
i.e. the influence of the two active neighbours is larger than in the previous case because 
the number of 'influent' sites has decreased. 

We now apply the MFRG method to this model, following the procedure in [6]. 
We start by writing the time evolution of the probabilities for a cluster of two influent 
sites, ij: 

where x is the probability of an influent site outside the cluster to be occupied (x is 
arbitrarily small in the vicinity of the transition) and E ( D )  is the number of influent 
neighbours to i ( j )  other than j ( i ) .  For brevity we have omitted similar equations for 
dP,,o,/dt and dP, , , , /d t .  

In the steady state and averaging over all possible configurations of the neighbours 
one gets for f l l = f ~ , , , + - f ( p , l o , + P ( ~ l i i ) :  

~ ~ = ~ [ ~ ~ f ( t 7 , 3 , 3 ) + 6 ~ ~ ( 1 - ~ ) f ( 7 7 , 3 , 2 ) + 6 ~ ~ ( 1 - ~ i ' ~ f ( 7 7 , 3 ,  1 )+9p4(1 -p ) ' f (~ ,2 ,2 )  

+2P'(l-p)'f(77,3,0)+18P'(l - P ) ~ ~ ( T ,  1,2)+6p2(1 -pj4f(7,2,  0 )  

+9p2( l  -pI4f(77, 1, 1 ) + 6 p ( l  - p I 5 f ( v ,  1,0)1+O(x') 

wheref(77, E, D ) =  P,I1)(77, E, ~ ) + ; [ P , l O l ( r l ,  E, D)+P(o11(77, E, 0 1 1  
D l [ ( D +  1 ) ( E +  1 + v ) I + E / [ ( E +  1 ) ( D + 1 +  7711 

( E  + l ) / ( E +  1 + 7 ) + ( D +  l ) / ( D + l +  7 7 )  P;111(77 ,  E, D ) =  

In a similar way, one gets for a one-site cluster 

PI = 7)'[1-(1 -p) ' ]x '+O(x '~) .  

Applying now the MFRG main assumption that in the vicinity of the transition Pi 
and PI, must scale like x' and x, one is led to the RG fixed-point equation 77, = T ~ (  p ) .  
This relation is displayed in figure 2 for p *  < p < 1; p *  is the site-percolation concentra- 
tion, below which there is no possibility of an infinite cluster of influent sites, and 
therefore no steady state with non-zero fraction of occupied sites can be attained. 

For p = 1, one recovers the pure contact process; for this one knows [6] that 
comparison of one-site and two-site clusters within MFRG just gives vC=2d / (2d  - l ) ,  
d being the dimensionality, and therefore rlc( p = 1)  = +. The inclusion of non-influent 
sites has the effect of increasing vc ;  however T~ never reaches the value 7, = 2 predicted 
for a one-dimensional system within the same approximation. The estimate obtained 
for qc at the percolation concentration vC( p * )  = 1.46 corresponds here to an effective 
dimensionality D = 1.6, in agreement with the sparse structure characteristics of the 
backbone [ 81. 
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Figure 2. Phase diagram for the contact process with dilution. Results of the MFRG method 
by counting all the configurations of neighbours a n d  then averaging (full  curve) .  Results 
of the h$FRG method by considering the average effect of dilution on dynamic rules (broken 
curve).  Also indicated is v C ( d  = l ) ,  a s  given by the MFRG method, again by comparison 
of one-  and  two-site clusters. 

An alternative way to take into consideration the change in the local rules introduced 
by dilution is, instead of counting all the possible configurations of neighbours and 
then averaging, as we have done above, to enter beforehand with the average effect 
dilution has on these dynamic rules. This means giving different weights to the sites 
when calculating the fraction of occupied influent sites: sites outside the cluster enter 
with weight ? =pv, whereas the influent sites of the cluster considered enter with 
weight 77. This means, for example, for the two-site cluster considered before, that the 
rateatwhich P,, , ,changesto P,,,,,forvanishinglysmall x, i snow [ q / ( l + ~ ) ] / [ q / ( 3 f +  
v ) ]  and  the rate for Poo changing to Po, is now 3 [ v / ( l +  ~ ) ] / [ q x / ( 3 f  + v)].  

With these changes, the MFRG equation, when clusters of the same size as above 
are considered, becomes 

i.e. 7, = (3p + 1)/3p. 
The result of this approximation is also represented in figure 2 .  Consideration of 

bigger clusters is certainly required for better accuracy if one wants to compare these 
estimates with results of simulation studies, even though we are not aware that they 
exist in this case; however, the algebra involved becomes increasingly tedious and  we 
have not attempted that here. We think that, apart from this limitation, the present 
approximation is able to give the correct picture of the concentration dependence of 
the critical kinetic parameter in this process. 

3. Effects of dilution in other processes 

We now consider the effects of dilution in a process with sequential dynamics and  
probability P, that site i appears in state 1 given that any of its nearest neighbours is 
in state 1 one time step before. As can be seen in [3], the use of this same rule and  
simultaneous updating of sites in two sublattices leads to the cellular automatum that 
describes site-directed percolation. 
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The time evolution of the probabilities for a cluster of two sites is now, to leading 
order in x 

Incorporating now the possibility of site dilution, i.e. considering that P, takes the 
value P in a fraction p of the sites and  is zero in the remaining sites, leads, when 
comparison of the two smallest clusters is considered, to the following concentration 
dependence of the critical parameter: P, = 1/ (3p  + 1).  This is plotted in figure 3 together 
with the results of the MFRG when four-site clusters are also used in the comparison. 
As can be seen P, increases monotonically with (1 - p ) ;  however, even in the vicinity 
of the percolation threshold, P, is still far below the value obtained within a comparable 
approximation for a one-dimensional system (a  MFRG with one- and  two-site clusters 
gives in this case P, = i). It would be interesting to be able to compare these results 
with those of numerical simulations: the present approximation is again expected to 
give a good qualitative prediction of the concentration dependence of the critical 
parameter, although, as in the pure system, one would have to go to bigger clusters 
and  lengthier algebra to extract more accurate estimates. 

P 
Figure 3. Results of the M F R G  method for the other process considered. Sequential 
dynamics, comparison of one- and two-site clusters (full curve); sequential dynamics, 
comparison of one- and four-site clusters (broken curve); simultaneous updating, com- 
parison of one- and two-site clusters (dotted curve). Also indicated are the values of 
Pc(d  = 1 )  and Pc(d = 2 )  as given by the M F R G  method by comparison of one- and two-site 
clusters. 

Very accurate numerical data certainly d o  exist [9] for this process with simultaneous 
updating, i.e. directed percolation. Noest [8] has studied this model with dilution but 
also numerical methods seem to face certain difficulties in determining accurately the 
full phase diagram. Our  study here is therefore meant as a comparison to what has 
been done  above for the process with sequential dynamics and  to the qualitative picture 
drawn in figure 1 of [8]. 

The MFRC method is therefore now applied to the simultaneous updating in two 
interpenetrating sublattices, as referred to in [3]. Taking now as a time unit the time 
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for updating in one sublattice followed by updating in the other, one has, for the rate 
of change of (01) into ( lo) ,  P( 1 - P ) .  The rates of change of (g,, a,) into (g:, U;) are 
indicated in table 1, again for a square lattice and in the vicinity of the transition. 

The MFRG equation is now, for the model with dilution and when the smallest 
clusters are considered, 

pc )] +3(1 - p )  = 4  
( 1 - PA 1 + 2 Pc) [ P , + ( P c + 1 ) ( 3 +  - P: + P, + 1 

and the respective plot is also included in figure 3. For the pure one-dimensional 
system the same approximation gives P, = i, considerably above the value obtained 
for P,( p * )  = 0.39. Of course these estimates represent just a qualitative picture of the 
concentration dependence, once the values obtained within this approximation for the 
pure system do  not distinguish between site and bond dilution and are still far from 
accurate values for bond-directed percolation: P,( d = 1 + 1, square lattice) = 0.705 [3], 
P,(d = 2 +  1, BCC) = 0.287 [9]. The consideration of bigger clusters involves in this case 
more tedious algebra and we have not done that here. 

3P2x 
3P( 1 - P)x 
3Pil- PIX 
P’ 
1-P  
P( 1 - P) 
P‘ 
1 -P  
PI1 - P) 
1 -P  
Pi1 - P) 
P(1-P) 

It still remains to investigate whether the different values of P, for the process with 
sequential or simultaneous dynamics are just a result of the approximation or whether 
they are intrinsic to the models; there is, in principle, no reason why different dynamics 
should lead to the same critical kinetic parameters, even in cases where the same 
critical exponents are encountered. 

4. Contact process with a different type of disorder 

We again consider the contact process where the rates of change are again 1/(  1 + 7,) 
and 7,/( 1 + 7,) times the fraction of 1’s in nearest-neighbour sites, but now we assume 
that, independently of the site, there is a probability p that 7, = 7 and a probability 
(1 - p )  that 71 = 0. This process can describe the situation when members of the 
population undergo temporary and random isolation such that at a given time they 
have a certain probability of behaving as non-influent. 
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The time evolution of the probabilities is now, for a two-site cluster on a square 
lattice, 

and the M F R G  method applied to this process gives a transition at q,=4 / ( -4+7p) .  
When p = 1 one recovers the estimate qc = for the pure system. However, the transition 
disappears for p < p = 4 ,  p playing here the role of a percolation threshold, even though 
this problem is conceptually different from quenched dilution (where translation 
invariance is broken); also here 1/vC goes to zero when p approaches p, contrary to 
what happens in the quenched dilution case, as we have seen above. 

5. Conclusions 

In conclusion, we have shown that the interest of the present method as an analytic 
tool to deal with phase transitions in non-equilibrium systems extends to situations 
where the local dynamic rules present some type of spatial disorder. 

The implementation of the method by using small clusters presents some limitations. 
The estimates it gives for the critical exponents are usually poorer than the ones for 
the critical parameters; for example, U is always estimated from above (du  is above 2 
in the present cases and  this prevents us from checking the extension of the Harris 
criterion to non-equilibrium systems [8], with the occurrence of new critical exponents 
associated with the disorder); the use of small clusters also misses important details 
in the vicinity of the percolation threshold. However, a considerable improvement of 
the results by considering bigger clusters is bound to involve rather lengthy calculations. 

Despite these limitations we think that the method is useful for a qualitative 
description of the effects of disorder on the phase diagram of these systems; the 
processes involved have interest on their own and it would be useful to have results, 
numerical or otherwise, to compare with the present ones. 
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